10 research outputs found

    High-fidelity imaging in brain-wide structural studies using light-sheet microscopy

    Get PDF
    Light-sheet microscopy (LSM) has proven a useful tool in neuroscience to image whole brains with high frame rates at cellular resolution and, in combination with tissue clearing methods, is often employed to reconstruct the cyto-architecture over the intact mouse brain. Inherently to LSM, however, residual opaque objects, always present to some extent even in extremely well optically cleared samples, cause stripe artifacts, which, in the best case, severely affect image homogeneity and, in the worst case, completely obscure features of interest. Here, demonstrating two example applications in intact optically cleared mouse brains, we report how Bessel beams reduce streaking artifacts and produce high-fidelity structural data for the brain-wide morphology of neuronal and vascular networks. We found that a third of the imaged volume of the brain was affected by strong striated image intensity inhomogeneity and, furthermore, a significant amount of information content lost with Gaussian illumination was accessible when interrogated with Bessel beams. In conclusion, Bessel beams produce high-fidelity structural data of improved image homogeneity and might significantly relax demands placed on the automated tools to count, trace, or segment fluorescent features of interest

    Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains

    Get PDF
    Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains

    Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy

    Get PDF
    Light-sheet microscopy (LSM), in combination with intrinsically transparent zebrafish larvae, is a method of choice to observe brain function with high frame rates at cellular resolution. Inherently to LSM, however, residual opaque objects cause stripe artifacts, which obscure features of interest and, during functional imaging, modulate fluorescence variations related to neuronal activity. Here, we report how Bessel beams reduce streaking artifacts and produce high-fidelity quantitative data demonstrating a fivefold increase in sensitivity to calcium transients and a 20-fold increase in accuracy in the detection of activity correlations in functional imaging. Furthermore, using principal component analysis, we show that measurements obtained with Bessel beams are clean enough to reveal in one-shot experiments correlations that can not be averaged over trials after stimuli as is the case when studying spontaneous activity. Our results not only demonstrate the contamination of data by systematic and random errors through conventional Gaussian illumination and but,furthermore, quantify the increase in fidelity of such data when using Bessel beams

    Novel optics-based approaches for cardiac electrophysiology: a review

    Get PDF
    Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 20181, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research

    Adaptive nonlinear microscopy for whole tissue imaging

    No full text
    Nonlinear microscopy is capable of imaging biological tissue non-invasively with sub-cellular resolution in three dimensions. For efficient multiphoton signal generation, it is necessary to focus high power, ultra-fast laser pulses into a volume of femtolitres. Aberrations introduced either by the system’s optical setup or the sample under investigation cause a broadening of the diffraction limited focal spot which leads to loss of image intensity and resolution. Adaptive optics provides a means to compensate for these aberrations and is capable of restoring resolution and signal strength when imaging at depth. We describe the use of a micro-electro-mechanical systems (MEMS) deformable membrane mirror in a multiphoton adaptive microscope. The aberration correction is determined in a wavefront sensorless approach by rapidly altering the mirror shape with a random search algorithm until the fluorescence or second harmonic signal intensity is improved. We demonstrate the benefits of wavefront correction in a wide-variety of samples, including urea crystals, convallaria and organotypic tissue cultures. We show how the optimization algorithm can be adjusted, for example by including a bleaching compensation, to allow the user to switch between different imaging modalities, producing a versatile approach to aberration correction

    Strategies to overcome photobleaching in algorithm-based adaptive optics for nonlinearin-vivoimaging

    Get PDF
    We have developed a nonlinear adaptive optics microscope utilizing a deformable membrane mirror (DMM) and demonstrated its use in compensating for system- and sample-induced aberrations. The optimum shape of the DMM was determined with a random search algorithm optimizing on either two photon fluorescence or second harmonic signals as merit factors. We present here several strategies to overcome photobleaching issues associated with lengthy optimization routines by adapting the search algorithm and the experimental methodology. Optimizations were performed on extrinsic fluorescent dyes, fluorescent beads loaded into organotypic tissue cultures and the intrinsic second harmonic signal of these cultures. We validate the approach of using these preoptimized mirror shapes to compile a robust look-up table that can be applied for imaging over several days and through a variety of tissues. In this way, the photon exposure to the fluorescent cells under investigation is limited to imaging. Using our look-up table approach, we show signal intensity improvement factors ranging from 1.7 to 4.1 in organotypic tissue cultures and freshly excised mouse tissue. Imaging zebrafish in vivo, we demonstrate signal improvement by a factor of 2. This methodology is easily reproducible and could be applied to many photon starved experiments, for example fluorescent life time imaging, or when photobleaching is a concern

    High-Fidelity Imaging with Bessel-Beam Light-Sheet Microscopy for Whole-Brain Structural and Functional Studies

    No full text
    Bessel beam have attractive properties like their propagation invariance and “self-healing” capabilities. Here we present significant advantages of Bessel illumination in structural and functional imaging in light-sheet microscopy compared to conventional Gaussian beam illumination
    corecore